Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites

نویسندگان

  • Yichao Yin
  • Min Zeng
  • Jue Liu
  • Wukui Tang
  • Hangrong Dong
  • Ruozhou Xia
  • Ronghai Yu
چکیده

Anisotropic Fe3O4 nanoparticle and a series of its graphene composites have been successfully prepared as high-frequency absorbers. The crystal structure, morphology and magnetic property of the samples were detailed characterized through X-ray diffractometer (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The high-frequency absorbing performance of the composites is evaluated within 2.0-18.0 GHz. Combining reduced graphene oxide (RGO) to Fe3O4 helps to adjust the permittivity and permeability of the composite, balance the dielectric loss and magnetic loss, consequently improve the absorbing performance in view of the impedance matching characteristic. The optimal reflection loss of the pure Fe3O4 sample reaches -38.1 dB with a thickness of 1.7 mm, and it increases to -65.1 dB for the sample grafted with 3 wt.% RGO. The addition of proper content of RGO both improves the reflection loss and expands the absorbing bandwidth. This work not only opens a new method and an idea for tuning the electromagnetic properties and enhancing the capacity of high-efficient absorbers, but also broadens the application of such kinds of lightweight absorbing materials frameworks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Radar Absorbing Capability of Polystyrene Nanocomposites: Preparation and Investigation of Microwave Absorbing Properties

Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene ...

متن کامل

Synthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method

Superparamagnetic few-layer graphene nanocomposites (FLG- NCs) can be used for many technological applications, such as solar cells, batteries, touch panels and supercapacitors. In this work, we applied electrochemical exfoliation method as a simple, one step and economical technique to fabricate FLG- NCs. The fabricated Superparamagnetic FLG- NCs were characterized by X-ray diffraction (XRD), ...

متن کامل

Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation

A facile, robust approach to the synthesis of Fe3O4/rGO/TiO2 nanocomposites is described. The synthesis involves two major steps: (1) preparation of Fe3O4/GO by an electrostatic self-assembly method; (2) deposition of TiO2 on the surface of the Fe3O4/rGO nanocomposite via a hydrothermal method. The asprepared Fe3O4/rGO/TiO2 photocatalyst exhibited an enhanced photocatalytic activity for the deg...

متن کامل

Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of ...

متن کامل

Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction

Graphene oxide-iron oxide (GO-Fe3O4) nanocomposites were synthesised by co-precipitating iron salts onto GO sheets in basic solution. The results showed that formation of two distinct structures was dependent upon the GO loading. The first structure corresponds to a low GO loading up to 10 wt%, associated with the beneficial intercalation of GO within Fe3O4 nanoparticles and resulting in higher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016